Long-distance temporal quantum ghost imaging over optical fibers
نویسندگان
چکیده
Since the first quantum ghost imaging (QGI) experiment in 1995, many QGI schemes have been put forward. However, the position-position or momentum-momentum correlation required in these QGI schemes cannot be distributed over optical fibers, which limits their large-scale geographical applications. In this paper, we propose and demonstrate a scheme for long-distance QGI utilizing frequency correlated photon pairs. In this scheme, the frequency correlation is transformed to the correlation between the illuminating position of one photon and the arrival time of the other photon, by which QGI can be realized in the time domain. Since frequency correlation can be preserved when the photon pairs are distributed over optical fibers, this scheme provides a way to realize long-distance QGI over large geographical scale. In the experiment, long-distance QGI over 50 km optical fibers has been demonstrated.
منابع مشابه
Optoelectronic Quantum Telecommunications Based on Spins in Semiconductors
The transmission of quantum information over long distances will allow new forms of data security, based on quantum cryptography. These new technologies rely for security on the quantum “uncertainty principle” and on the long distance transmission of “quantum entanglement.” A new type of telecommunications device called the “quantum repeater” can allow the faithful transmission of quantum infor...
متن کاملVIEWPOINT A Solid Footing for a Quantum
Q uantum secure communication relies on sharing of entangled states between parties. Over short distances (less than 100 km), these states can be distributed by sending photons over optical fibers, but losses in those fibers limit long-distance sharing. One solution is to use a sequence of “quantum repeaters” along the optical fiber connection [1]. These devices can store the quantum informatio...
متن کاملQuantum and classical coincidence imaging.
Coincidence, or ghost, imaging is a technique that uses two correlated optical fields to form an image of an object. In this work we identify aspects of coincidence imaging which can be performed with classically correlated light sources and aspects which require quantum entanglement. We find that entangled photons allow high-contrast, high-resolution imaging to be performed at any distance fro...
متن کاملPhase-sensitive light: coherence theory and applications to optical imaging
Spontaneous parametric downconversion (SPDC) can produce pairs of entangled photons, i.e., a stream of biphotons. SPDC has been utilized in a number of optical imaging applications, such as optical coherence tomography, ghost imaging, holography and lithography, to obtain performance that cannot be realized with standard optical sources. However, a debate continues as to whether the improved im...
متن کاملQuantum cryptography and long distance Bell experiments: How to control decoherence
Several mechanisms that affect one and two photon coherence in optical fibers and their remedies are discussed. The results are illustrated on quantum cryptography experiments and on long distance Bell inequality tests.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016